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IN STEADY FLOW ALONG THE AXIS OF A
DIRECT-CURRENT ELECTRIC ARC

By Howard A. Stine and Velvin R. Watson
SUMMARY

An approximate solution is obtained for the enthalpy and electrical
conductivity distributions in a cylindrical, direct-current-arc column
with steady air flow along the axis. The only form of energy loss
considered is lateral heat conduction. The solution predicts the follow-
ing behavior for given length and diameter of column: (1) higher operat-
ing efficiencies at lower pressures and higher mass flows, (2) higher
enthalpies at higher currents and lower flow rates, and (3) higher arc
voltages with higher mass flows. The solution furthermore indicates
that with given mass flow rate, pressure, and current, higher enthalpies
occur with increase of length or decrease of radius of the column, that
there are simultaneous increases in arc voltages and radial heat transfer,
and that the efficiencies will suffer decreases. What has been said with
regard to trends with length at fixed mass flow is equivalent to trends
with the reciprocal of the mass flow at fixed length. The trend of
increasing enthalpy output as radius is decreased agrees with experiment.

INTRODUCTTION

No theory is available for predicting the energy transfer within an
arc column in a moving stream of air. It is obvious that such a theory
would be desirable to provide an understanding of the process by which
the air is heated, of how its energy is distributed in space, and of the
efficiency of the energy exchange processes. Unfortunately, a treatment
of the complete equations that govern the energy transfer (i.e., the
equations of motion, Maxwell's equations, and the equation of state)
involves such a large number of nonlinearly related variables as to defy
ready solutions. Thus, in what follows, the point of view will be that
valid conclusions can be drawn from a study of an arc column model
simplified sufficiently to permit solution, but retaining the essential
and dominant characteristics of the energy transfer processes.

Such a model for an arc column in still air was formulated by
Elenbaas and Heller (ref. 1) by neglecting all forms of heat loss except
radial heat conduction. Maecker (ref. 2) measured spectroscopically the



characteristics of & static arc in nitrogen and concluded that the
simplified theoretical model did, indeed, reflect the observed character-
istics at moderate arc pressures. The model formulated in this report to
represent the direct-current-arc colum therefore incorporates the
principal assumption that conduction i1s the dominant means of energy
transfer and that radiation loss is unimportant. In addition, the model
is assumed to be a right circular cylinder with air in steady flow along
the axis. The configuration is meant to represent, for example, the
current-carrying region of the wall-stabilized arc-jet plasma generator
(shown in fig. 1) in which electrode processes can be neglected. It is
further assumed that the boundary layer does not encroach on the current-
carrying core.

The energy equation then uncouples from the equations of motion and
Maxwelll!s equations. Solutions can be obtained for the enthalpy distri-
bution if the further assumptions are incorporated that the air is in
local thermodynamic equilibrium and that the Lorentz force is small
compared to the applied voltage potential. Such a model permits an

approximate solution that is analytic and that predicts the several effects

of varying the column radius, column length, current, mass-flow rate, and
pressure .

SYMBOLS

. . mho-sec
A parameter of the approximation o = A@,-—fgga——
c conversion constant, 9.47x10~% __Btu

¢ ? > watt-sec
Cn constants of integration
cp specific heat at constant pressure, Btu/lb °F
D diameter, ft
E voltage gradient, volts/ft
. -11.5¥/% 1/2 . -

f(y) the function (l-e o)~ %, dimensionless
H average enthalpy, Btu/lb (reference, H = 0 at 0° R)
h enthalpy, [cp 4T, Btu/1b (reference, h = -3,500 at 0° R)
n enthalpy, [cp 4T, Btu/1b (reference, A = 0 at 0° R)

enT /0 1i/2
; D c
hg the quantity Rre <A> s Btu/lb
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current, amp

zero—-order Bessel function of the first kind
first-order Bessel function of the first kind
current density, amp/ft®

thermal conductivity, Btu/ft OF sec

arc columm length, ft

pressure, lb/ft2

total heat transfer from the arc columm, Btu/sec
local heat transfer from the surface of the arc column, Btu/sec ft2
radial distance from the axis of the arc column, ft
radius éf the current carrying cylinder, ft
temperature, °R

time, sec

axial velocity, ft/sec

arc column voltage drop, volts

weight flow rate, 1lb/sec

axial distance along the column, ft

the length wep/xk, ft

constant of the eigenfunctions, dimensionless
efficiency of ohmic heating in the arc colum, dimensionless
density, 1b/ft3

electric conductivity, mho/ft

conductivity function, [k dT, Btu/sec ft (reference, ¢ = -0.3 at
0° R)
conductivity function, Sk dT, Btu/sec ft (reference, § = 0 at 0° R)

colum resistance, ohm



Subscripts and Superscripts

( )oo value at large =z

( )E radially averaged value at the column exit
( ) partial differentiation with respect to r
( )Z partial differentiation with respect to =z
(), value at the solid boundary

() dimensionless quantity

ANALYSIS

Assumptions

The model used to represent the current-carrying region of the arc
colum of figure 1 is detailed in figure 2. The shape is a right circular
cylinder of length 1 and radius re Wwith coincident axial electric
current and air flow. Cylindrical polar coordinates r and z are used
within the cylinder. The origin is arbitrarily located at a point along
the axis where the electric conductivity is small, so that essentially
nonconducting air flows into the region of the discharge to be studied.
The boundary condition for the radius is that the electric conductivity
also is small, and can be considered precisely zero at the surface
r = rg- Thus no electric current flows outside the cylinder of radius
re. The radial heat flow crossing the boundary must therefore be that
function of 2z which preserves the cylindrical column shape.

The characteristics approximated and the gssumptions inherent in this
model are as follows:

1. The air flow is assumed one-dimensional, steady, laminar, and
axisymmetric with the specific weight flow (pu) constant.

2. The electric discharge is stationary.

3. Heat loss due tc thermal conduction is assumed much larger than
radiation heat loss.

L. The air is assumed to be in thermodynamic equilibrium. -

5. Lorentz force is negligible.

6. The electric potential is constant on planes perpendicular to
the axis.
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T. Viscous dissipation and kinetic energy changes are assumed
negligible compared to enthalpy changes due to ohmic heating.

The assumptions listed in (1) and (2) above might seem unrealistic since
most arc columns in flowing gas appear to be turbulent or, if laminar,
unstable. In fact, Kovasznay (ref. 3) has speculated that the flow in all
high-current-arc columns must be turbulent, and Cann (ref. 4) describes
arc column instabilities of the sausage and kink types which are theoreti-
cally inherent in laminar arc columns. However, arc discharges that
appear to be stationary and laminar have been produced in commercially
available, wall-stabilized arc-Jjet plasma generators. PFurthermore, these
generators are claimed to produce very high enthalpies and, therefore, are
of particular interest. The theoretical model of figure 2 is expected to
be a reasonable approximation to such laminar arc columms.

The remaining assumptions were selected for the following reasons.
Finkelnburg (ref. 1) showed that the radiation loss from an arc column is
a small fraction of the total loss for column pressures of the order of
one atmosphere. Therefore, the dominant form of heat transfer remaining
for consideration is conduction, when this conduction includes the heat
transfer due to recombination of atoms, ions, and electrons as given by
Hansen (ref. 5). The assumption that the air is in thermodynamic equilib-
rium is valid for densities high enough so that the thermodynamic gradients
are small over a mean free path. Cann (ref. 4) shows that this assumption
is valid for pressures of one atmosphere or greater. Lorentz force can
be shown to be small compared to pressure forces of interest if no external
magnetic field is applied. The assumption of constant electric potential
on planes perpendicular to the axis simplifies the analysis, but imposes
the condition that the direction of current flow is fixed. Lastly, the
heating from viscous dissipation and the changes in kinetic energy will be
small compared to ohmic heating for high enthalpy arc columns in which the
exit flow is choked by an aerodynamic throat. Thus, the pressure will be
constant within a factor of two at most. The arc column model shown in
figure 2, therefore, is believed to be a reasonable approximation to the
arc column of wall-stabilized, laminar arc-Jjet plasms generators for
moderate pressures in the absence of external magnetic fields.

Energy Equation for the Arc Column

For the model assumed here the energy equation can be separated from
the equations of motion and Maxwell's equations. Its simultaneous solu-
tion with the equation of state and Ohm's law gives the distribution for
enthalpy (or electrical conductivity) in the column. After truncation in
accordance with the foregoing assumptions the energy equation is:

©, 52 (1)
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where
E'p=fkd’.l"

The first term is the rate of energy absorption by the air, the second
term is the rate of energy production by ohmic heating, and the remaining
terms give the rate of heat loss by conduction.

Ohm's law for a cylindrical columm is

J = ok
A
If E is considered independent of radius, it follows that g
J /;reQﬁrj dr 7
—=E(Z)=—“
g Te
/; 2xro dr -

Therefore, the jg/c term of the energy equation can be written as

(f 2 'd>2

ey r
3=, . X° ’ ®o
o2

= re 2 0% - 2
<&) 2nro df) Qé eQﬂro d{)

and the energy equation becomes

=2
t o (2)

t

OR CoI%0 2

pu — =
Oz Te
/g 2xro dr

where, from Kirchoff's law of conservation of current, I = const.

P
+
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The equation of state, h = h(T,p) for air in thermodynamic equilib-
rium, can be used to define the transport properties ¢ and @ as

o = U(T:P); 5 = $(T:P>

since both are considered to be scalars and independent of electromagnetic
field strength. For a given constant pressure these can be written as

o= o(9)

and . . -
h = 7(%)

where . N
O = CP(I‘,Z) =

These relations have been derived from data in reference 5 by Hansen and
reference 6 by Viegas and Peng, and are shown in figures 3 and 4. Since
the dependent variables h and ¢ are both expressible in terms of the
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conductivity function @, equation (2) can be written

R(F) _ CeIZ () I
oz Te - 2 0
[ ®2nra(d) ar

The enthalpy or electric conductivity distributions can be obtained
from numerical solutions of this equation. However, if further approxi-
mations are made regarding the o(®) and h(®) curves, an analytic solution
can be obtained as is done in the next section. Equation (3) reduces to
the Flenbaas-Heller equation if the term on the left (the rate of energy
absorption by the air) and the last term on the right (the axial conduc-
tion term) are zero.

+_—

1933 %%
ot r dr 0z (3)
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Approximate Solution of the Energy Equation

An approximate solution to equation (3) can be obtained if for the
nonlinear o = o(®) and A = A(P) curves a number of piecewise-linear curves
are substituted as was done by Goldenberg (ref. 7) for the Elenbaas-Heller
energy equation. The errors resulting from applying various numbers of
linear segments are discussed in appendix A. As is shown therein, even
the rough approximation that the h = h(9P) and o = o(P) curves are single
straight lines for appropriate ranges of o and i is sufficiently accu-
rate to predict over-all trends, except, perhaps, the trends with
pressure. The approximation is therefore introduced that enthalpy and
electric conductivity are both linear with the conductivity function @
and can be represented at a given pressure by single straight lines.

The equations of the lines are h = (cp/k)(p)® and o = A(p)@
where (cp/k) and A are average slopes determined for given pressure
from the curves in figures 3 and 4. For convenience, the origins of the
curves in figures 3 and 4 are hereafter shifted so that the integrals

T T
) =\/p 2k dT and h =k/p 2cp dT are zero when o = O. Thus, the base
Ty T,
temperature, T,, for h =0 and ¢ = 0 is the temperature at which o
is taken as zero in the linear approximation. These points are indicated
on the curves of figures 3 and 4 at @ = 0.3 and O = 3500 Btu/lb.

Owing to the various approximations and assumptions that have been
introduced, the following relations exist between the electric and
thermodynamic variables:

ko _ o __ ]
=5 (P = 1y < AmE)

Because E, the electric field strength has been assumed to be a function



only of =z, and because the total current I is assumed constant, the
current density J, at most, can be a function of radius. It therefore
follows that at constant pressure the enthalpy h and the conductivity

o must be functions of the type
h ~ o ~ R(r)Z(z)

The approximate energy equation in terms of enthalpy is

dh c h k h 10n °n
[pulv[ccriﬂ ' H@—‘a—a— (4)

2
I
<Z)e2ﬁrh d;)

where the terms in square brackets are parameters. The energy equation A
can also be written in terms of the electric conductivity and the result- ~
ing equation will be identical in form to equation (4).

~ U\ =

Equation (4) can be made dimensionless by the following change of
variables:

NI
|

where
Zo = purez(cp/k) = ch/ﬂk

= r/re

2]l

where re 1is the radius of the current-carrying cylinder, and

h = h/ho
where o I 1/2
o)

Equation (4) reduces to the following dimensionless form:

— 2

- h T _ _ _
hg = 1 2+[_e] hzz + hgy + = hy (5)
<fo 2xFh dl‘«>

This equation is an elliptic partial differential integral equation which

Bl

2
Te
is nonlinear. The term [z—] hzz represents the loss by axial conduc-

tion; so it 1s seen that the requirement for neglectlng axial conduction -
is that the following inequality hold:

. 2
Te | - 1= =
,:ZO] hzz <<z by + hgzp



The -ratio re/zO is easily computed to be much less than unity for arc
columns with a radius of less than one foot and a mass flow rate greater
than 0.01 lb/sec in the pressure range from 1073 to 102 atmospheres. An
upper limit for EEZ can be obtained a posteriori from the solution for
h where axial conduction is neglected. When this is done one finds that
only near =z = 0 is the term hyy the same order of magnitude as

(1/%) hy + hyp. Therefore, the term [re/zol®hzz is negligible for
sufficiently long arc columns and equation (5) becomes

By = b + hgg +

2
1 _
<fo 2x7h df)

This parabolic equation is mathematically identical to the equation
for the transient enthalpy distribution as derived by Frind (ref. 8) for
an arc column in still air with a step current input where

hyp (6)

sIl-

3t = Oz
Therefore, as =z 1increases, the radial enthalpy distribution approaches
the distribution of a steady-state arc columm in still air.

For the boundary conditions h =0at r =1r, and h = 0 at z =0,
a solution to equation (6) can be obtained by separation of variables
since h(¥,%z) = R(¥)Z(E):

2

R dz = RZ + Z d R + zZ AR
dz N 2 a72 T ar
<k)2ﬁfRZ d?>
which when divided by RZ 1is
14z _ 1 _LAR, 1R g
7 4z R dF2 Ry 4T

=2
zz<f012m?R df‘)

Then

d_Z.+B

2 1 _
= 7 - - = =0 (7)
Z<é 21TR d?)
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and .
&r , 1aR +pPR =0 (8)
are T 4dr

The solution to equation (7) is

1 e—ZBE(E'*‘Cl)i

= — ;2‘ -
52<é12ﬂfR df) op=

z = 0 one obtains

zZ

From the boundary condition h = 0 at

i/2
<;—e“252£> ~
Z:
B<k}2ﬁfR df) -

The solution to equation (8) is

I\l

R = C,J,(BF) + CuY,(BT)

From the physical limitation that h De finite at r = 0, C5 must be

zero. From the boundary condition that h =0 at r =1, B must be the
zero of J,- Since h cannot assume negative values, the first zero,

2.4, is chosen. Therefore, a solution to equation (6) is

_ 1 2_}1/2
h = 5?3:?5717 [1—e—2(2-4) z Jo(2.47) (9)

From equation (9) it is seen that as the length variable &z increases
without limit,
z Jo(2 .4T)

-

= 0.307 Jo(2.b7
onT,(2.4) 307 Jo(2-48)

Therefore, hy, = 0.307 hodo(2.4F) which is the approximate solution for the
steady state arc in still air obtained by Goldenberg (ref. 7).

Results

The sclution derived in the previous section, equation (9), glves the
local enthalpy anywhere in the arc column as a function of the radial
distance, r, and the axial distance, z. Predictions can now.be made of
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the average enthalpy of the air leaving the columm, the local and over-all

. heat transfer from the column, the local and over-all voltage drops of the

column, and the efficiency of the energy exchange processes, while varying
the following quantities:

Amperage input
Column radius
Column length
Mass—-flow rate
Column pressure

The solution for the local enthalpy in dimensional form is

1/2
sz () @) (o) ol ) 0o

It can be seen from equation (10), first, that enthalpy is directly
proportional to the ratio of total current to column radius. Second, it
appears that enthalpy increases with decreasing mass flow and/or increasing
column length. To explore the trends of efficiency, heat loss, and voltage
as the parameters are varied, it is convenient to derive further relation-
ships as follows:

Local heat loss from current-carrying cylinder

_ 8T> X ah>
a=x (&) -LE(&
or. rere Cp \Or reTe

where ¢ is the local heat loss per unit area from the column surface and
k/c is a constant. Upon substitution from equation (lO), the above
expression becomes

x b f(z)2.hg (2.4)

Q= Cp Te

a1 I
q = 1.18x10 2<—A3/—2—> <§>f(z)

£(z) = <;_e—11.5Z/Zé>1/2

or

vhere
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Finall L = p(z
y) qoo ( )
where
- 1 I
= 2
q_ = 1.18x10 <A1/2> w2 (11)
Local voltage gradient
E = I - I - 2.k
r I
_/(; ®onro dr /(; C2qr % h dr re(ACc)l/2 £(z)
and
.21
Ew f(z)
where
78.0
By = ———x (12)
00 reAl/2

Radially averaged enthalpy of the air leaving the column

__1_[Te
hE—?&? . 2nrh dr

or

hgp = 4,08x10-3 %) <-I;Ig> (1) (13)

1/2
£(1) = <l_e—11.52/zo>

Total heat loss from surface of current-carrying cylinder

A
Q =f 92nr, dz

(o}

[2.4 <9A9 1/2%]/;11,(2)
1+£(1)

wen I 27 || Ty
[2 hf:kr > ] lef(Z) ~£(2)

where

I

=1\ \J
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or
1+£( 1)
Q N ) ) 4
——— = 0.1 — == (1 1
T 7 > ( (
Total voltage drop over arc columm
1
A% =\/p E dz
o]
1
_ 2.4 1/2f 1 4,
re (ACe) o f(2)
. rz l+f(Z)l
_ wep YD)
2 bk (AC,) T Fre 2
1+£(1)
in
v 1-£(2)
g - OTH > (15)

One may note that the voltage does not depend upon the current, but only
upon the mass flow, w, the length, 1, and the radius, ro. Voltage would
be a decreasing function of current if the curve of o vs. ¢ were
approximated by o = A'o" with n > 1, and would increase with current
if n<1. The choice n = 1 results in the independence of voltage on
current.

Efficiency with which electric energy is delivered to air leaving column

whp power absorbed by the air

ne CCIZQ - power input

where

1
Q=f_dz_
O

r
.é e2ﬁrd dr



since
Ak
=—h
o o
then
=1 (=Ze ‘o I
|: A>l k I‘e:l f< )
n = Z - _—— e e -
2
CCIj; Te 1/2 I_J ]_ b é
2 f Jal 2. a
JC [ nr(ACe) [EnJl(E m (z) o<' '> r :
or !

. er(y) (16) ]

—lﬁ(_l)_‘

mITEO)

From equation (16) it is noted that 17 is independent of re and is a
function of the dimensionless column length, Z/(ch/ﬁk , only.

Local properties of the column (eq. (10)) are shown in figures 5
through 7. The dimensionless local enthalpy, h, is given as functions
of the dimensionless axial and radial distances of the columm in figures 5
and 6, respectively. These local values can be completely represented by
two graphs because the variables 7z and ¥ are separable. The radial
enthalpy distribution, the Bessel function J,, is identical to the radial
distribution determined by an analogous procedure for a steady state arc
in still air. The axial enthalpy distribution approaches an asymptote for
large z. Therefore, at large =z the radial heat loss becomes equal to

the heat input due to ohmic heating.

The dlmensionless local heat transfer from the column surface
(eq. (11)) is proportional to the center-line enthalpy and varies with
dimensionless axial distance identically as enthalpy, as is also seen in
figure 5. The dimensionless Jlocal voltage gradient (eq. (12)), which is
assumed constant on planes perpendicular to the axis, takes very high
values at small Z and rapidly decreases to an asymptotic value (see

fig. 7).

The integrated properties of the column are shown in figures 8 and 9.
These properties are shown with current held constant. The radially
averaged enthalpy of the air leaving the column, hg (eq. (13)), the total
heat loss from the column, Q (eq (14)), and the total voltage drop
through the column, V (eq. (15)), all vary inversely with the radius B
(fig. 8). The exit air enthalpy increases rapidly with column length
where Z/zO is small and approaches an asymptotic value for large Z/ZO
(fig. 9). The heat loss and voltage drop, however, continually increase
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with increasing length, and become directly proportional to the length for
large 1/zo (fig. 9). The dimensionless column length 1/(we,/wk) reflects
changes in the dimensional column length and the mass flow rate W, so that
the effects of varying either of these variables can be determined from
plots with Z/zo as the abscissa.

Variations in pressure are felt through the changes in the parameters
cp/k and A (see figs. 3 and 4). The term cp/k does not vary greatly with
pressure, so the dimensionless column length Z/zO is not affected greatly
by pressure. Also, the term A does not vary greatly with pressure for
low enthalpies but does vary appreciably at enthalpies above 17,500 Btu/lb.
At high enthalpies the accuracy with which the ¢ = o(@) curve can be
approximated by a single straight line is also affected greatly, so precise
effects of pressure cannot be determined by this approximate solution.
However, gqualitatively, an increase in pressure at high enthalpies
increases the value of A and decreases the reference values hg, 9.,
and E, so that the enthalpy, heat transfer, and voltage should decrease
somewhat with increasing pressure, all other parameters remaining
unchanged. It should be remarked that pressure changes of several orders
of magnitude appear to be necessary to produce significant changes in these
reference values, and that the over-all effects of pressure changes on
column characteristics are small.

The efficiency (eq. (16)) is a function of the dimensionless column
length only, and therefore is independent of the column radius and the
current. As shown in figure 10, the efficiency is highest at small Z/Zo
and continually decreases with increasing Z/zo; thus as the length becomes
large, the loss per unit length approaches the power input per unit length.
Therefore, the efficiency increases with decreasing column length, 1,
increasing mass flow rate, w, or decreasing pressure (increasing cp/k).

One may note that maximum efficiency is not, in general, synonymous with
maximum enthalpy. The reason is that at constant finite current the
enthalpy tends to zero (eq. (10)) as efficiency tends toward unity with
decreasing Z/zo- If the current is allowed to increase without limit,
however, while the total power, VI, is held constant, it can be shown from
equations (10), (15), and (16) that maximum efficiency occurs in an arc
column of vanishingly small length, since the losses then tend toward zero.
The solution thus predicts that, for given current and mass-flow rate, the
average exit air enthalpy of the arc column can be increased by increasing
the column length or decreasing the column radius, that a simultaneous
increase in power consumption and heat loss will occur, and that the over-
all efficiency will decrease.

Discussion

The analysis presented herein is a treatment of the manner in which
alr is heated in axial passage through the current-carrying portion of a
direct-current electric arc. - In establishing a mathematically tractable
model for the air-arc interactions, the principal idealizations that radial
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heat conduction is the only mechanism for heat loss, that the air flow
and electric current flow are one-dimensional, and that thermodynamic
equilibrium exists at constant pressure have been imposed. Nothing has
been said sbout conditions external to the model except to prescribe at
its outer boundary a longitudinal distribution of conductive heat transfer
compatible with the cylindrical shape.

It is clear that in practice the current-carrying core of the arc
cannot be allowed to come in contact with a solid boundary, whether it be
an electrical conductor or an electrical insulator, without disastrous
results. Thus, there must exist an annular buffer zone of air between the
container wall and the current-carrying core wherein the electrical
conductivity approaches zero. The buffer zone will nevertheless possess
an appreciable enthalpy and will in fact experience on its inner boundary
an enthalpy of about 3,500 Btu/lb (cf. figs. 3 and 4).

If the outer boundary of the buffer zone, where it is in contact with
the container, also is cylindrical, it is clear qualitatively that the
temperature of this wall must vary with 2z in such a manner that the
prescribed longitudinal distribution of heat transfer from the core
(eq. (11)) can take place. In fact, to preserve the cylindrical core, the
enthalpy of the gas at the wall at 2z = O must have the core-edge value of
3,500 Btu/1b so that no heat will flow, and must decrease with increasing
z to accommodate the radial heat transfer prescribed by equation (11).
Since a nonvaporizing physical container cannot exist at the temperature
corresponding to the enthalpy at 2z = 0, it follows that, in practice, an
arc column in a cold, cylindrical duct at constant temperature must spread

with an increase in 2.

On the other hand, if the container is maintained at constant
temperature, it is easily shown qualitatively that to maintain a cylindri-
cal core the container radius must decrease with 2z +to preserve the
required heat-transfer distribution. However, the boundary then cannot be
impervious to fluid flow, but must possess a distribution of pores or slots
so that the streamlines will be parallel to the axis. It is thus apparent
that the boundary conditions at the edge of the current-carrying core which
were used in the present analysis are not compatible with boundary condi-
tions which are within practical reach.

It is nevertheless instructive to compare the meager, but sufficiently
controlled, experimental information available with some of the integrated
results of the present analysis. To this end, the trend of output enthalpy
of an electric-arc air heater as a function of the diameter of the arc-
colum container will be compared with the analytical findings. The Justi-
fication for so doing, despite the fact that the experimentsl and theoreti-
cal boundary conditions are different, lies in the belief that the detailed
differences in local behavior between analytical model and experiment will
not lead to gross differences in integrated behavior.

The data, which were collected incidental to a program for development
of an electric-arc air heater at the Ames Research Center, consist of a

~J Ui\ e
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series of runs wherein an arc current on the order of 2,000 amperes and an
air flow of 0.1 1b/sec at a pressure of about seven atmospheres were caused
to pass through a short, cylindrical tube of boron nitride. The only
changes in the arc heater from run to run consisted of changes in tube

" diameter in the range from 2 to 3—1/2 inches and in the electrode spacing

in the range from 3 to 4 inches. The sketch illustrates the experimental
arrangement.

Tangential air inlets /—Insulution

Pressure fcp\J a

Exit nozzle

-
Local magnetic—< =
flux at both
ring electrodes
approx. 1500 Gauss

I Ring electrodes

Gr—v'v= .1b/sec.

A measure of the energy content of the gases leaving the arc chamber
through the choked nozzle approximately 2 inches downstream of each boron
nitride tube wasg obtained from a Mollier chart for equilibrium gir. Inputs
for the enthalpy computation were the measured mass flow, the measured arc
chamber pressure, the measured diameter of the sonic discharge throat, and
the nozzle coefficient measured in cold flow. To minimize effects of
contamination due to ablation of boron nitride, the runs were of approxi-
mately l-second duration. These data are given in the list below.

Hole diameter, D, ft 0.292 0.250 0.229 0.167
Current, I, amp 1400 2050 2450 2150
Energy content, H, Btu/lb 4700 6000 6200 7200

To allow a direct comparison of these experimental data with the analyti-
cal results, the average energy content of the air between the arc column
axis and the boron nitride tube wall at the tube exit must be calculated.
To approximate the energy content of the air which bypassed the arc column
the assumption pu = constant was extended to the tube wall and a constant
value of radial heat flux was assumed between the arc column and the wall
at the tube exit. The approximate enthalpy profile at the exit is,
therefore,
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h = hmJo<%.H %}) £(1) for O0<r<rg (7
€
and
h = —1.25hmf(l)ln<%%> for r > rg (18)
e

The average enthalpy, H, to be compared with the experimental data is
therefore

y YR
H= ————L/\ 2nrh dr
‘J‘[Dz o

or

D\ D 1 re Y
c 00 e naofos(E)- (@) - 1+ o5f]} 09
o0 D ngre 2 b (

where

. 1/2
ht(2) = 9.u3><10—8<<_£_1/3§> (E_e> |:l_e—ll.52/zo:|

The tube radius, D/2, to be compared with experiment is

D hy
D. ~ 0.80 ______} 20
2 reem{ h (1) (20)

Values of the various parameters used in this calculation and their
sources were as follows:

1 = 0.125 £t (experiment - see sketch)

¥ = 0.1 1b/sec (experiment - see sketch)
cp/k = 10% £t sec/1b (fig. 3)

A = 200 mho-sec/Btu (fig. 4)

0.947x10~8 Btu/watt-sec by definition

Q
[
It

i
“
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The value of the gas énthalpy at the tube wall is unknown; so two values,
R =0 and h = 600 Btu/lb, are used as limiting values. The comparison of
the experimental data with the curves obtained with the values above is
shown in figure 11.

It can be observed that the data are in gratifyingly good agreement
with the calculation which assumes that the boron nitride tubes were near
their sublimation temperatures. Whether or not this agreement is merely
fortuitous cannot now be decided, because data giving voltage drops across
the length of the tube and heat flows to the wall are lacking. The results
do serve to show, however, that significant gains in output enthalpy of a
current-limited plasma generator can be realized by increase of the ratio
of current per unit circumference of the arc colum.

7

The analysis further indicates that increases of output enthalpy will
accrue 1f the ratio of column length to mass flow is made as large as is
feasible. Since it is in general not desirable to decrease mass flow, one
is driven to consider longer arc columms if high enthalpy is to be
realized.

The extent to which the mass flow rate and the length can be increased
before the onset of turbulence or before an unstable mode of operation sets
in cannct be predicted by this theory, but it appears likely that a simul-
taneous reduction of diameter, increase of length, and increase of mass
flow would tend to induce a turbulent mode of operation or would drive the
column off the axis of symmetry or both. Therefore, attempts to simply
"scale up" generators by following the predictions of this analysis should
be made with caution.

CONCL.USIONS

The enthalpy and electric conductivity distributions of an arc column
in air moving along the axis can be approximated with an analytical solu-
tion if the flow can be congidered laminar and steady with heat conduction
the dominant form of energy transfer. This solution predicts the changes
in the arc colum enthalpy, efficiency, heat transfer, and voltage when
the column length, radius, mass-flow rate, current, and pressure are
varied. The enthalpy for an arc column with a given flow rate and current
supply can be increased by decreasing the radius of the arc column and
increasing the length, and a concurrent increase in voltage and radial heat
loss due to conduction will be experienced. The trend of increasing
enthalpy output as radius is decreased agrees with experiment.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., May 24, 1962

L L
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APPENDIX
LINEARTZING APPROXIMATTIONS OF THE ENERGY EQUATION

Goldenberg (ref. 7) obtained an analytic approximate solution to the
Elenbaas-Heller energy equation by linearizing the relation between the
dependent variables o and ¢. The Elenbaas-Heller energy equation is

_ 14 ar
O'EZ-‘ ?§<rkdr
or

oE® = - P = Py

The piecewise linear approximations are o = A ¢ + B, for the n
approximating segments. These linear gpproximations of the o -
curve are shown in figure 12. The Elenbaas-Heller energy equation then

reduces to
1 2 _
%r+;cpr+E(Acp+B)—O
for which the solutions are

¢ = ~(B/A) + C1Jo(rENA) + CoY (rENE) for A >0

@ = -(Br®E®/4) + C1in (rE + Cs) for A =0

¢ = —(B/A) + C1Io(rEN= B) + CoKo(rEN = A)  for A <O
Jo(x) = Bessel function of first kind
Yo(x) = Bessel function of second kind

Io(x) = Modified Bessel function of first kind

Modified Bessel function of second kind

it

Ko (x)

The segments of ¢ are joined so that ¢ is continuous and the heat
transfer (@,) is continuous. The analytical solutions with the approxi-
mations of figure 12 are compared with King's numerical solution (7) in
figure 13. Even rough approximations of the o -~ ¢ curve give reasonably
close approximations to the temperature profile as shown by the

~ '\ \J
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approximations II and III (figs. 12 and 13). With such rough approxima-
tions, local irregularities, such as the humps in the temperature profile
discussed by King (ref. 9), are smoothed out and not predicted. However,
the over-all trends of the solution are not masked.

For the energy equation of the model of the arc column in moving air
(eq. (3)), the approximation that o = A (which is the Goldenberg
approximation with ® =0 at o = 0) and h = (cp/k) @ (where cp/k  is
constant) transforms the egquation to equation %5) which can also be
written as

- 2

- _ P el fee 4 Toe

ez = N > T {ESJ %z * Pep t
<fo a0 df'>

The solution for this with 2z, >> re 1is equation (9):

P

R

o =h = £(2) &(7)

The function g(r) is precisely the Goldenberg approximate solution which
already was shown to give a reasonable approximation of the radial ¢
profile. The axial profile is a direct function of the energy absorbed
per unit length, and the errors can be judged from the following form of
the energy equation.

i

Rate of energy absorbed Ohmic heating - Energy lost

IZ

4?2ﬁrc dr

[}

- 2ﬁr@r

The o and ¢ radial profiles are reasonably approximated by the Goldenberg
solution, so both of the above terms are also reasonably approximated.
Therefore, the axial profile (rate of energy absorbed) retains the general
trends of the numerical solutions and can be used to predict gross
behavior of the arc column.
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Figure 13.- Comparison of analytic approximate solutions and the numerical
solution of the Elenbaas energy equation (from ref. 7).
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